名古屋大学トランスフォーマティブ生命分子研究所 教授・主任研究者
名古屋大学大学院理学研究科 教授
台湾中央研究院 化学研究所 研究フェロー
〒464-8602 名古屋市千種区不老町
E-mail: itami@chem.nagoya-u.ac.jp, Phone/Fax: 052-788-6098
教授室:理農館518号室、ITbM棟528号室
1990年4月〜1994年3月 京都大学工学部合成化学科(生越 久靖 教授)
1994年4月〜1996年3月 京都大学大学院工学研究科合成・生物化学専攻修士課程(伊藤 嘉彦 教授)
1996年4月〜1998年7月 京都大学大学院工学研究科合成・生物化学専攻博士後期課程(伊藤 嘉彦 教授)
1996年4月〜1998年7月 日本学術振興会特別研究員 (DC1)
1997年4月〜1998年3月 スウェーデン、ウプサラ大学留学 (Prof. Jan-E. Backvall)
1998年8月〜1998年9月 日本学術振興会特別研究員 (PD)
1998年10月〜2005年1月 京都大学大学院工学研究科合成・生物化学専攻 助手(吉田 潤一 教授)
2005年2月〜2008年5月 名古屋大学物質科学国際研究センター 准教授(野依 良治 特別教授)
2005年10月〜2009年3月 科学技術振興機構 戦略的創造研究推進事業 さきがけ研究員
2008年6月〜(現在) 名古屋大学大学院理学研究科物質理学専攻化学系 教授
2012年12月〜(現在) 名古屋大学トランスフォーマティブ生命分子研究所 教授・主任研究者(兼任)
2012年12月〜2022年3月 名古屋大学トランスフォーマティブ生命分子研究所 拠点長
2013年10月〜2020年3月 科学技術振興機構 ERATO 伊丹分子ナノカーボンプロジェクト 研究総括(兼任)
2019年4月〜(現在) 台湾中央研究院 化学研究所 研究フェロー(兼任)
2009年 京都大学客員教授
2011年 武漢大学 Overseas Distinguished Professor
2013年〜2015年 東京大学客員教授
2023年 The Paul G. Gassman Lecturer, University of Minnesota, USA
2022年 Frontiers of EOC Lectureship, Nankai University, China
2022年 The Reuben Benjamin Sandin Lecturer, University of Alberta, Canada
2022年 ChemSoc Lecturer, University of New South Wales (UNSW) Sydney, Australia
2021年 Highly Cited Researchers 2021, Clarivate Analytics
2020年 Highly Cited Researchers 2020, Clarivate Analytics
2019年 Highly Cited Researchers 2019, Clarivate Analytics
2018年 The Netherlands Scholar Award for Supramolecular Chemistry
2018年 Highly Cited Researchers 2018, Clarivate Analytics
2018年 The Guthikonda Lecturer, Stanford University
2018年 The Roland K. Pettit Centennial Lecturer, University of Texas, Austin
2018年 CSJ Award for Creative Work, The Chemical Society of Japan
2017年 Highly Cited Researchers 2017, Clarivate Analytics
2017年 ICI Distinguished Lecturer, University of Calgary, Canada
2017年 The Chunichi Cultural Award
2017年 The Bristol-Myers Squibb Lecture, University of California, Berkeley
2017年 The Yomiuri Techno Forum Gold Medal Prize
2017年 The SYNLETT Best Paper Award 2016, Thieme
2016年 The Holger Erdtman Lecture, KTH, Sweden
2016年 The Nagase Prize
2016年 Treat B. Johnson Lecture, Yale University
2016年 Ta-Shue Chou Lectureship Award, Academia Sinica
2015年 R. C. Fuson Visiting Professor, University of Illinois at Urbana-Champaign
2015年 Arthur C. Cope Scholar Award, American Chemical Society
2015年 Swiss Chemical Society Lectureship Award
2014年 Nankai University Lectureship Award
2014年 The Aldrich Lecture, Emory University
2014年 The JSPS Prize
2013年 Novartis Chemistry Lectureship Award
2013年 Mukaiyama award
2013年 Asian Rising Star Award, Asian Chemical Congress
2012年 Fellow of the Royal Society of Chemistry, UK
2012年 ドイツイノベーションアワード2012
2012年 Novartis-MIT Lecturer in Organic Chemistry
2011年 ACP Lectureship Award, China
2011年 ACP Lectureship Award, Malaysia
2011年 野副記念奨励賞
2011年 武漢大学 海外特別教授
2008年 Merck-Banyu Lectureship Award
2007年 Banyu Young Chemist Award
2006年 文部科学大臣表彰 若手科学者賞
2005年 三井化学 第 1 回触媒科学奨励賞
2005年 日本化学会 進歩賞
2004年 Thieme Journals Award
2000年 有機合成化学協会 研究企画賞(日産化学工業)
2008~2011 Canadian Journal of Chemistry (Advisory Board)
2011~2017 Organic & Biomolecular Chemistry, RSC (Editorial Board)
2012~2022 Beilstein Journal of Organic Chemistry (Associate Editor)
2012~2016 ChemCatChem (International Advisory Board)
2013~present Bulletin of the Chemical Society of Japan (Senior Editor)
2013~2021 Chemistry – An Asian Journal (International Advisory Board)
2014~present Advanced Synthesis & Catalysis (Academic Advisory Board)
2015~present The Chemical Record (Editorial Board)
2015~present Tetrahedron/Tetrahedron Letters (Consulting Board of Editors)
2016~2018 Accounts of Chemical Research (Editorial Advisory Board)
2016~present Chem, Cell Press (Editorial Board)
2017~2020 Angewandte Chemie (International Advisory Board)
2019~present ACS Central Science (Editorial Advisory Board)
2021~present Tetrahedron Chem (Advisory Board)
2022~present Precision Chemistry (Associate Editor)
合成化学、分子ナノカーボン科学、触媒科学、生物活性分子
日本化学会、有機合成化学協会、近畿化学協会、ケイ素化学協会、アメリカ化学会
論文リスト参照
396 publications
H-index: 83 (Web of Science, ResearcherID: B-5110-2011)
Selected as Highly Cited Researchers 2017, 2018, 2019, 2020, 2021, Clarivate Analytics
>140 patent applications
>450 plenary/invited lectures since 2006
(A28) “Methylene-bridged [6]-, [8]-, and [10]cycloparaphenylenes: Size-dependent properties and paratropic belt currents” H. Kono et al., J. Am. Chem. Soc. 2023, 145, ASAP.
(A27) “Synthesis, properties, and material hybridization of bare aromatic polymers enabled by dendrimer support” S. Fujiki et al., Nature Commun. 2022, 13, 5358.
(A26) “Perfluorocycloparaphenylenes” H. Shudo et al., Nature Commun. 2022, 13, 3713.
(A25) “Synthesis of a Möbius carbon nanobelt” Y. Segawa et al., Nature Synth. 2022,1, 535-541.
(A24) “Infinitene: A helically twisted figure-eight [12]circulene topoisomer” M. Krzeszewski et al., J. Am. Chem. Soc. 2022, 144, 862-871.
(A23) “Diversity-oriented synthesis of nanographenes enabled by dearomative annulative π-extension” W. Matsuoka et al., Nature Commun. 2021, 12, 3940.
(A22) “Double-helix supramolecular nanofibers assembled from negatively curved nanographenes” K. Kato et al., J. Am. Chem. Soc. 2021, 143, 5465-5469.
(A21) “Synthesis of a zigzag carbon nanobelt” K. Y. Cheung et al., Nature Chem. 2021, 13, 255-259.
(A20) “Chemical synthesis of carbon nanorings and nanobelts” Y. Li et al., Acc. Mater. Res. 2021, 2, 681-691.
(A19) “Creation of negatively curved polyaromatics enabled by annulative coupling that forms an eight-membered ring” S. Matsubara et al., Nature Catal. 2020, 3, 710-718.
(A18) “A nonalternant aromatic belt: Methylene-bridged [6]cycloparaphenylene synthesized from pillar[6]arene” Y. Li et al., J. Am. Chem. Soc. 2020, 142, 12850-12856.
(A17) “Topologically unique molecular nanocarbons” Y. Segawa et al., Acc. Chem. Res. 2019, 52, 2760-2767.
(A16) “Topological molecular nanocarbons: all-benzene catenane and trefoil knot” Y. Segawa et al., Science 2019, 365, 272-276.
(A15) “Strength of carbon nanotubes depends on their chemical structures” A. Takakura et al., Nature Commun. 2019, 10, 3040.
(A14) “Polycyclic arene synthesis by annulative π-extension” H. Ito et al., J. Am. Chem. Soc. 2019, 141, 3-10.
(A13) “Ultra-narrow-band thermal exciton radiation in intrinsic one-dimensional semiconductors” T. Nishihara et al., Nature Commun. 2018, 9, 3144. 05598-3
(A12) “A water-soluble warped nanographene: Synthesis and applications for photo-induced cell death” H.-A. Lin et al., Angew. Chem. Int. Ed. 2018, 57, 2874-2878.
(A11) “Synthesis of partially and fully fused polyaromatics by annulative chlorophenylene dimerization” Y. Koga et al., Science 2018, 359, 435-439.
(A10) “Electrically activated conductivity and white light emission of a hydrocarbon nanoring-iodine assembly” N. Ozaki et al., Angew. Chem. Int. Ed. 2017, 56, 11196-11202.
(A9) “Synthesis of a carbon nanobelt” G. Povie et al., Science 2017, 356, 172-175.
(A8) “Synthesis and structural features of quadruple helicenes: Highly distorted π systems enabled by accumulation of helical repulsions” T. Fujikawa et al., J. Am. Chem. Soc. 2016, 138, 3587-3595.
(A7) “Structurally uniform and atomically precise carbon nanostructures” Y. Segawa et al., Nature Rev. Mat. 2016, 1, 15002.
(A6) “One-shot K-region-selective annulative π-extension for nanographene synthesis and functionalization” K. Ozaki et al., Nature Commun. 2015, 6, 6251.
(A5) “All-benzene carbon nanocages: Size-selective synthesis, photophysical properties, and crystal structure” K. Matsui et al., J. Am. Chem. Soc. 2014, 136, 16452-16458.
(A4) “A grossly warped nanographene and the consequences of multiple odd-membered-ring defects” K. Kawasumi et al., Nature Chem. 2013, 5, 739-744.
(A3) “Initiation of carbon nanotube growth by well-defined carbon nanorings” H. Omachi et al., Nature Chem. 2013, 5, 572-576.
(A2) “Synthesis of cycloparaphenylenes and related carbon nanorings: A step toward the controlled synthesis of carbon nanotubes” H. Omachi et al., Acc. Chem. Res. 2012, 45, 1378-1389.
(A1) “Selective synthesis of [12]cycloparaphenylene” H. Takaba et al., Angew. Chem. Int. Ed. 2009, 48, 6112-6116.
B. 合成方法論
(B23) “Lithium-mediated mechanochemical cyclodehydrogenation” K. Fujishiro et al., J. Am. Chem. Soc. 2023, 145, 8163-8175.
(B22) “π-Extended rubrenes via dearomative annulative π-extension reaction” W. Matsuoka et al., J. Am. Chem. Soc. 2023, 145, 658-666.
(B21) “Selective transformation of strychnine and 1,2-disubstituted benzenes by C-H borylation” Y. Saito et al., Chem 2020, 6, 985-993.
(B20) “Rapid access to nanographenes and fused heteroaromatics by palladium-catalyzed annulative π-extension reaction of unfunctionalized aromatics with diiodobiaryls” W. Matsuoka et al., Angew. Chem. Int. Ed. 2017, 56, 12224-12228.
(B19) “Annulative π-extension (APEX): An enabling reaction for rapid access to fused aromatics, heteroaromatics, and nanographenes” H. Ito et al., Angew. Chem. Int. Ed. 2017, 56, 11144-11164.
(B18) “Catalytic dehydrogenative C-H imidation of arenes enabled by photo-generated hole donation to sulfonimide” E. Ito et al., Chem 2017, 2, 383-392.
(B17) “Decarbonylative organoboron cross-coupling of esters by nickel catalysis” K. Muto et al., Nature Commun. 2015, 6, 7508.
(B16) “para-C-H borylation of benzene derivatives by a bulky iridium catalyst” Y. Saito et al., J. Am. Chem. Soc. 2015, 137, 5193-5198.
(B15) “Catalytic C-H imidation of aromatic cores of functional molecules: Ligand-accelerated Cu catalysis and application to materials- and biology-oriented aromatics” T. Kawakami et al., J. Am. Chem. Soc. 2015, 137, 2460-2463.
(B14) “Synthesis and characterization of hexaarylbenzenes with five or six different substituents enabled by programmed synthesis” S. Suzuki et al., Nature Chem. 2015, 7, 227-233.
(B13) “Concise syntheses of dictyodendrins A and F by a sequential C-H functionalization strategy” A. D. Yamaguchi et al., J. Am. Chem. Soc. 2015, 137, 644-647.
(B12) “C-H bond functionalization: Emerging synthetic tools for natural products and pharmaceuticals” J. Yamaguchi et al., Angew. Chem. Int. Ed. 2012, 51, 8960-9009.
(B11) “Decarbonylative C-H coupling of azoles and aryl esters: Unprecedented nickel catalysis and application to the synthesis of muscoride A” K. Amaike et al., J. Am. Chem. Soc. 2012, 134, 13573-13576.
(B10) “Nickel-catalyzed C-H/C-O coupling of azoles with phenol derivatives” K. Muto et al., J. Am. Chem. Soc. 2012, 134, 169-172.
(B9) “Direct aylation of polycyclic aromatic hydrocarbons through palladium catalysis” K. Mochida et al., J. Am. Chem. Soc. 2011, 133, 10716-10719.
(B8) “A general catalyst for the beta-selective C-H bond arylation of thiophenes with iodoarenes” K. Ueda et al., Angew. Chem. Int. Ed. 2010, 49, 8946-8949.
(B7) “Programmed synthesis of tetraarylthiophenes through sequential C-H arylation” S. Yanagisawa et al., J. Am. Chem. Soc. 2009, 131, 14622-14623.
(B6) “Potassium t-butoxide alone can promote the biaryl coupling of electron-deficient nitrogen heterocycles and haloarenes” S. Yanagisawa et al., Org. Lett. 2008, 10, 4673-4676.
(B5) “Rh-catalyzed arylation and alkenylation of C60 using organoboron compounds” M. Nambo et al., J. Am. Chem. Soc. 2007, 129, 8080-8081.
(B4) “Direct C-H arylation of (hetero)arenes with aryl iodides via rhodium catalysis” S. Yanagisawa et al., J. Am. Chem. Soc. 2006, 128, 11748-11749.
(B3) “Triarylethene-based extended π-systems: Programmable synthesis and photophysical properties” K. Itami et al., J. Org. Chem. 2005, 70, 2778-2792.
(B2) “Sequential assembly strategy for tetrasubstituted olefin synthesis using vinyl 2-pyrimidyl sulfide as a platform” K. Itami et al., J. Am. Chem. Soc. 2004, 126, 11778-11779.
(B1) “Diversity-oriented synthesis of multisubstituted olefins through the sequential integration of palladium-catalyzed cross-coupling reactions. 2-Pyridyldimethyl(vinyl)silane as a versatile platform for olefin synthesis” K. Itami et al., J. Am. Chem. Soc. 2001, 123, 11577-11585.
C. 化学時間生物学
(C7) “Reversible modulation of circadian time with chronophotopharmacology” D. Kolarski et al., Nature Commun. 2021, 12, 3164.
(C6) “Photopharmacological manipulation of mammalian CRY1 for regulation of the circadian clock” D. Kolarski et al., J. Am. Chem. Soc. 2021, 143, 2078-2087.
(C5) “Small molecules modulating mammalian biological clocks: Exciting new opportunities for synthetic chemistry” K. Amaike et al., Chem 2020, 6, 2186-2198.
(C4) “Isoform-selective regulation of mammalian cryptochromes” S. Miller et al., Nature Chem. Biol. 2020, 16, 676-685.
(C3) “Controlling the circadian clock with high temporal resolution through photodosing” J. Am. Chem. Soc. 2019, 141, 15784-15791.
(C2) “Cell-based screen identifies a new potent and highly selective CK2 inhibitor for modulation of circadian rhythms and cancer cell growth” T. Oshima et al., Science Adv. 2019, 5, eau9060.
(C1) “C-H activation generates period-shortening molecules that target Cryptochrome in the mammalian circadian clock” T. Oshima et al., Angew. Chem. Int. Ed. 2015, 54, 7193-7197.
D. 植物ケミカルバイオロジー
(D9) “Discovery of 2,6-dihalopurines as stomata opening inhibitors: Implication of an LRX-mediated H+-ATPase phosphorylation pathway” A. Ueda et al., ACS Chem. Biol. 2023, 18, 347-355.
(D8) “Identification of stomatal-regulating molecules from de novo arylamine collection through aromatic C-H amination” Y. Toda et al., Sci. Rep. 2022, 12, 949.
(D7) “Casein kinese 1 family regulates PRR5 and TOC1 in the Arabidopsis circadian clock” T. N Uehara et al., Proc. Nat. Acad. Sci. 2019, 116, 11528-11536.
(D6) “Discovery of plant growth stimulants by C-H arylation of 2-azahypoxanthine” H. Kitano et al., Org. Lett. 2018, 20, 5684-5687.
(D5) “Discovery of shoot branching regulator targeting strigolactone receptor DWARF14” M. Yoshimura et al., ACS Cent. Sci. 2018, 4, 230-234.
(D4) “Chemical hijacking of auxin signaling with an engineered auxin-TIR1 pair” N. Uchida et al., Nature Chem. Biol. 2018, 14, 299-305.
(D3) “Discovery of synthetic small molecules that enhance the number of stomata: C-H functionalization chemistry for plant biology” A. Ziadi et al., Chem. Commun. 2017, 53, 9632-9635.
(D2) “The AMOR arabinogalactan sugar chain induces pollen-tube competency to respond to ovular guidance” A. G. Mizukami et al., Curr. Biol. 2016, 26, 1091-1097.
(D1) “Probing strigolactone receptors in Striga hermonthica with fluorescence” Y. Tsuchiya et al., Science 2015, 349, 864-868.